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Hsa_circ_0017728 as an oncogene in gastric cancer 
by sponging miR-149 and modulating the IL-6/STAT3 
pathway

Chun Yang, Shaoping Deng

A b s t r a c t

Introduction: Circular RNAs (circRNAs) have been identified as competing 
endogenous RNAs (ceRNAs) to mediate gene expression participating in the 
progression of multiple cancers, including gastric carcinoma (GC). However, the 
underlying molecular mechanisms by which circRNAs-modulated cell prolifera-
tion and apoptosis in GC had not been completely clarified. In our study, hsa_
circ_0017728 as a  potential oncogene competing endogenous RNA (ceRNA) 
was investigated in the progression and development of gastric carcinogenesis. 
Material and methods: High-throughput sequencing was used to determine 
differentially expressed circRNAs in GC tissues and corresponding non-can-
cerous tissues. The CCK-8 assay and Annexin V-fluorescein isothiocyanate/
polyimide (Annexin V-FITC/PI) staining were performed to detect the cell 
viability and apoptosis in GC cells. In addition, gene expression and protein 
levels in GC tissues and cell lines were measured using RT-qPCR and western 
blotting, respectively. 
Results: Our results demonstrated that the hsa_circ_0017728 expression 
level was up-regulated in GC tissues and cell lines and closely associated 
with poor overall survival and pathological differentiation, higher TNM stage 
and lymph node metastasis. Knockdown of hsa_circ_0017728 had the abili-
ty to cause inhibition of cell proliferation and migration and elevate the cell 
apoptosis rate in GC cells. We also discovered that hsa_circ_0017728 might 
serve as a ceRNA to sponge miR-149 and indirectly regulated the IL-6/STAT3 
signaling pathway in GC cell proliferation and apoptosis. 
Conclusions: The regulatory network of hsa_circ_0017728/miR-149/IL-6/
STAT3 cascade signaling might provide a  better understanding of gastric 
carcinogenesis and progression.
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Introduction

Gastric carcinoma (GC) is the second most common cancer and the 
second most common cause of cancer-related death in China [1]. There 
were approximately 679,100 newly diagnosed and approximately 498,000 
deaths in 2015, and the incidence and mortality of GC account for 15.8% 
and 17.7%, respectively, of all cancer cases in China [1]. However, the 
molecular mechanisms underlying gastric carcinogenesis have not been 
completely clarified. Recently, there has been strong interest in explor-
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ing the roles of non-coding RNAs, including circular 
RNAs (circRNAs), long non-coding RNAs (lncRNAs) 
and microRNAs (miRNAs), in the process of GC 
[2–4].

CircRNAs are a  novel class of endogenous 
noncoding RNA and are characterized by sin-
gle-stranded, covalently closed circular molecules 
without 5′ to 3′ polarity and a polyadenylated tail 
[5, 6]. CircRNAs are predominantly generated in 
eukaryotes via four cyclized models: back-spliced 
exons, circular intronic RNAs, exon-intron circRNAs 
and intergenic circRNAs [7, 8]. Moreover, circRNAs 
have four major functions, including as competing 
endogenous RNAs (ceRNAs) to sponge microRNAs 
(miRNAs), interaction with RNA binding proteins 
to regulate the cell cycle and proliferation and the 
management of gene transcription and protein 
translation [8, 9]. A growing body of research in-
dicates that numerous circRNAs are deregulated in 
various tumor tissues and have been implicated in 
cancer-related processes, including proliferation, 
migration, invasion and apoptosis [10–13]. Molec-
ular mechanistic investigation has demonstrated 
that circRNAs mainly function as miRNA spong-
es to neutralize miRNAs levels and regulate their 
downstream targets in the tumorigenesis of can-
cer, including GC [2]. 

miRNAs are small, non-coding and single-strand-
ed RNAs (approximately 22 nucleotides) and func-
tion as post-transcriptional regulators to modulate 
gene expression by sequence-specific interaction 
with their 3′-untranslated regions (3′-UTRs) [14]. 
Many enlightening and forecasting studies high-
light the potential of miRNAs as diagnostic and 
prognostic biomarkers and therapeutic targets 
for the treatment of malignant tumors [14, 15].  
miR-149, as one of the most well-characterized 
anti-oncomiRs, is reduced in a  variety of cancers 
and cell lines, including bladder cancer, colorectal 
cancer and breast cancer [16–18]. In GC, lncRNAs 
as ceRNAs contain conserved miRNA binding sites 
and recruit miR-149 to the inactivation of their 
expression and the reinforcement of their down-
stream targets, which result in the acceleration of 
cell proliferation and metastasis [19, 20]. 

miRNAs have been recently identified to reg-
ulate the interleukin 6 (IL-6)/signal transducer 
and activator of transcription 3 (STAT3) signaling 
pathway in cancer, and the IL-6/STAT3 pathway 
is considered as the most promising new target 
for cancer therapy [21]. For example, miR-9 loss 
of function leads to over-activation of the IL-6/
STAT3 pathway through targeting IL-6, resulting in 
the proliferation, migration and malignant trans-
formation of HeLa cells in vivo and in vitro [22]. 
miR-34a suppresses IL-6/STAT3-modulated epi-
thelial-to-mesenchymal transition, invasion and 
metastasis in colorectal cancer [23]. In addition, 

miR-149 improves the tumor microenvironment in 
GC by mediating IL-6 signaling [24]. In the present 
study, we found that IL-6 was a direct target of miR-
149, and hsa_circ_0017728 was used as a miRNA 
sponge to silence the function of miR-149. 

The purpose of the present study was to inves-
tigate whether hsa_circ_0017728/miR-149/IL-6/
STAT3 cascade signaling was associated with the 
development and progression of GC.

Material and methods

Clinical specimens

Fifty-five pairs of GC tumor and non-cancerous 
tissues were collected from patients who under-
went a  surgical operation at the Department of 
Gastrointestinal Surgery, Sichuan Academy of 
Medical Sciences & Sichuan Provincial People’s 
Hospital (Chengdu China). Then the specimens 
were maintained at –80°C for further analysis. The 
specimens of GC patients were classified accord-
ing to the 2004 World Health Organization criteria 
and TNM staging system. Written informed con-
sent was obtained from all of the participants prior 
to collection of samples. The study was approved 
by the Ethics Committee of the Sichuan Academy 
of Medical Sciences & Sichuan Provincial People’s 
Hospital (Chengdu China) according to the Helsinki 
Declaration. 

Cell culture and treatment

Human normal gastric epithelial cell line GES-1  
and five GC cell lines (AGS, BGC-823, MKN-28, 
MGC-803 and SGC-7901) were purchased from the 
Cell Bank of China Academy of Sciences (Shanghai, 
China). Cells were cultured in Dulbecco’s modified 
Eagle’s medium (DMEM; Invitrogen, Carlsbad, CA, 
USA) with 10% fetal bovine serum (Thermo Scien-
tific HyClone, Beijing, China), 100 U/ml penicillin 
and 100 mg/ml streptomycin in a humidified incu-
bator (Thermo Fisher Scientific, Inc., Waltham, MA, 
USA), with 5% CO

2, 95% air atmosphere.

High-throughput sequencing

Total RNA was extracted using the miRNeasy 
Mini Kit (Qiagen, Inc., Valencia, CA, USA) and pre-
served at –80°C until use. NanoDrop ND-2000 
(Thermo Fisher Scientific, Wilmington, DE, USA) 
was used to measure the concentration and purity 
of RNA. Total RNA (approximately 4 μg) from each 
sample was subjected to the RiboMinus Eukaryote 
Kit (Qiagen) to eliminate ribosomal RNA. Purified 
RNAs were treated with RNase R (Epicenter, 40 U, 
37°C, 3 h). Ovation RNA-Seq System V2 (NuGEN, 
CA, USA) was used to generate the libraries for 
RNA sequencing, according to the manufacturer’s 
instructions. Barcoded libraries were then pre-
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pared using the NEBNext DNA Library Prep Master 
Mix Set for Illumina, followed by gel excision and 
extraction to collect the 250-bp fragments. Frag-
ments were sequenced on the HiSeq2000 platform 
using paired-end reads, with an average of 30 mil-
lion reads per sample. Sequence reads were first 
multiply mapped against the GRCh37/hg19 human 
reference genome using TopHat 2.1. Unmapped 
reads were then extracted and mapped onto the 
relevant reference genome using TopHat-Fusion. 
Reads that split and aligned on the same chro-
mosome but in noncollinear ordering were ex-
tracted as candidate back-spliced junction reads. 
Back-spliced junction reads were further realigned 
against existing gene annotations to determine 
the precise positions of donor or acceptor splice 
sites for each back-spliced event. Finally, back-
spliced junction reads were combined and scaled 
to RPB (reads per billion mapped reads, including 
TopHat mapping and TopHat-Fusion mapping) to 
quantify every back-spliced event. Differentially 
expressed circRNAs were selected by a  p-value 
less than 0.001 and |Log2fold change| ≥ 1, and the 
analysis methods were performed as previously 
described [25, 26]. 

Cell transfection

MKN-28 and MGC-803 cells were transfected 
with the corresponding plasmids using Lipofect-
amine 2000 (Invitrogen, Thermo Fisher Scientific, 
Inc., Waltham, MA, USA) according to the manu-
facturer’s protocol. The small interfering RNA (si-
RNA) was designed using Circinteractome (https://
circinteractome.nia.nih.gov) to silence the function 
of hsa_circ_0017728. The targeted sequence of 
the functional si-0017728 was 5′-GGGGTTTCTA-
GAGTTGATCAT-3′; and si-Control (si-Con) served as 
a control. miR-Control (miR-Con), miR-149 mimics, 
Scramble and miR-149 inhibitors were synthesized 
by RiboBio (Guangzhou, China). The sequence of re-
combinant human IL-6 (rhIL-6) was obtained from 
reverse transcription (RT) of total RNA, which was 
extracted from GC tissues. RhIL-6 and pUC18 plas-
mid were reconstructed by EcoR I/BamH I  double 
enzyme digestion. Primers used for plasmid con-
struction are listed as follows: forward primer 5′-CG-
GAATTCATGATTGACAAACAAATTCGG-3′ and reverse 
primer 5′-CGCGGATCCTTACATTTGCCGAAGAG-3′.

CCK8 assay

MKN-28 and MGC-803 cells were seeded in 
a 96-well plate for 24, 48 and 72 h transfected with 
corresponding plasmids. Cell viability was detected 
using the CCK-8 Cell Proliferation/Viability Assay 
Kit (Dojindo, Japan). Absorbance was recorded at 
450 nm using Elx800 Reader (Bio-Tek Instruments 
Inc., Winooski, VT, USA). 

Wound healing assay

MKN-28 and MGC-803 cells were trypsinized 
and reseeded in each well of a new 6-well plate. 
After 24 h incubation, the confluent cell monolay-
ers were scratched with a 10 μl sterile pipette tip. 
Then the non-adherent cells were washed off with 
sterilized PBS and serum-free medium was added 
to the wells. The gap area caused by the scratch 
was monitored by the inverted microscope (Olym-
pus, Japan). Three random non-overlapping areas 
in each well were pictured at 24 h post-scratch. 
Scratch width between the two linear regions was 
quantitated for assessing the capacity of cell mi-
gration. 

Flow cytometry

MKN-28 and MGC-803 cells were seeded in the 
96-well plate and transfected with corresponding 
plasmids for 48 h. Cell apoptosis was monitored 
using an Annexin V-FITC/PI apoptosis detection kit 
(Carlsbad, Calif., USA) according to the manufac-
turer’s protocol. Apoptotic cell proportion was ana-
lyzed by flow cytometry (FACScan, BD Biosciences, 
San Jose, CA, USA) and calculated by CELL Quest 
3.0 software (BD Biosciences). 

Luciferase reporter assay

The wild-type (WT) and mutant-type (Mut) 
hsa_circ_0017728 and IL-6 were inserted into the 
multiple cloning sites of the luciferase express-
ing pMIR-REPORT vector (Ambion; Thermo Fisher 
Scientific, Inc.). For the luciferase assay, MKN-28 
and MGC-803 cells (1 × 105) were seeded into  
24 wells and co-transfected with miR-149 mimics 
or inhibitors using Lipofectamine 2000 (Invitro-
gen; Thermo Fisher Scientific, Inc.), according to 
the manufacturer’s protocol. The luciferase activ-
ity was measured using a luciferase reporter assay 
kit (Promega, Madison, WI, USA) according to the 
manufacturer’s protocol.

Reverse transcription-quantitative 
polymerase chain reaction (RT-qPCR)

Total RNA was extracted using the miRNeasy 
Mini Kit (Qiagen, Inc., Valencia, CA, USA). The 
TaqMan RT kit (Applied Biosystems; Thermo Fish-
er Scientific, Inc.) and TaqMan MicroRNA assay 
(Applied Biosystems; Thermo Fisher Scientific, 
Inc.) were used to perform RT-qPCR of miR-193-
3p, according to the manufacturer’s protocol. 
U6 small nuclear RNA was used as an endoge-
nous control. The following primers were used:  
miR-149: forward, 5′-GGCTCTGGCTCCGTGTCTT-3′, 
and reverse, 5′-CAGTGCAGGGTCCGAGGTATT-3′; 
U6 forward, 5′-CAAATTCGTGAAGCGTTCCATA-3′, 
and reverse, 5′-AGTGCAGGGTCCGAGGTA TTC-3′.  
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Divergent primers were designed to amplify the 
head-to-tail splicing of circRNA using ABI7300 
System (Applied Biosystems, Foster City, CA, USA) 
with TaqMan Universal PCR Master Mix (Ther-
mo Fisher Scientific, Inc.). The relative expres-
sion levels of circRNAs were calculated using the  
2–ΔΔCq method [27] and normalized to the internal 
control glyceraldehyde 3-phosphate dehydroge-
nase (GAPDH). The following PCR primers were 
used: hsa_circ_0103546: forward, 5′-ATCCAGG-
CAATTGCACCCCA-3′, and reverse, 5′-CTTGGCAA- 
AGGATGCACGTC-3′; hsa_circ_0101031: forward,  
5′-GGCTTTTGAATCTCAGCCAGC-3′, and reverse,  
5′-GGCCTTGTCACAAAAATGGCA-3′; hsa_circ_0017- 
728: forward, 5′-CATGCAATCGTGGTTTGCCA-3′, and  
reverse, 5′-GGGGTTGATTTTGGCAGCTT-3′; hsa_circ_ 
0103948: forward, 5′-TGGATTACAGCAACAGTT- 
GTCTTC-3′, and reverse, 5′-ACACTTGAATTTGTTT- 
TCCTTCCT-3′; hsa_circ_0103942: forward, 5′-AGT-
CAAAGTGCCACAGAGGTT-3′, and reverse, 5′-GTA-
GAGGGTTGCTGAACGGG-3′; GAPDH forward, 
5′-GCACCGTCAAGCTGAGAAC-3′, and reverse, 
5′-TGGTGAAGACGCCAGTGGA-3.

Western blotting

Proteins were extracted with radio immunopre-
cipitation assay (RIPA) buffer (Beyotime Institute 
of Biotechnology, Haimen, China). Western blotting 
assay was performed as previously described [28]. 
The membranes were incubated with the prima-
ry antibody for IL-6 (cat. no. sc-130326; dilution:  
1 : 1,000; Santa Cruz Biotechnology, Inc., Dallas, TX, 
USA), STAT3 (cat. no. sc-8019; dilution: 1 : 1,000; 
Santa Cruz Biotechnology) and p-STAT3 (cat. no. 
9134; dilution: 1 : 1,000; Cell Signaling Technology, 
Inc., Danvers, MA, USA) at room temperature for  
2 h. Then, the membrane was incubated at room 
temperature for 1 h with the appropriate horserad-
ish peroxidase-conjugated anti-mouse secondary 
antibody (cat. no. sc-516102; 1 : 10,000; Santa Cruz 
Biotechnology, Inc.) and visualized using chemilu-
minescence (Thermo Fisher Scientific, Inc.). β-actin  
(1 : 2,000; cat. no. sc-130065; Santa Cruz Biotechnol-
ogy, Inc.) was used as the control antibody. Signals 
were analyzed with Quantity One software version 
4.5 (Bio Rad Laboratories, Inc., Hercules, CA, USA).

Statistical analysis

Data were presented as mean ± SEM. Statisti-
cal analysis was performed using IBM SPSS Statis-
tics Version 19.0 (SPSS Inc., Chicago, IL, USA) and 
GraphPad Prism Version 7.0 (GraphPad Software, 
Inc., La Jolla, CA, USA). Student’s t-test was used to 
analyze two-group differences. Inter-group differ-
ences were analyzed by one-way analysis of vari-
ance, followed by Tukey’s post hoc analysis. Surviv-
al analysis was performed using the Kaplan-Meier 

method with the log-rank test applied for compar-
ison. Spearman’s rank analysis was used to iden-
tify the correlation between hsa_circ_0017728 
and miR-149. P < 0.05 was considered to indicate 
a statistically significant difference. 

Results

Altered expression profiles of circRNAs  
in tumor tissues from GC patients

To investigate the roles of circRNAs in gastric 
carcinogenesis, we selected out differentially ex-
pressed circRNAs using high-throughput sequenc-
ing. Based on the screening criteria p < 0.001, false 
discovery rate ≤ 0.001 and |Log2fold change| ≥ 1, 
43 circRNAs were significantly and differentially 
expressed in tumor tissues compared with cor-
responding non-cancerous tissues. Among them, 
19 and 24 circRNAs were down-regulated and 
up-regulated, respectively (Figure 1 A). To validate 
the results of high-throughput sequencing, the 
top 5 upregulated circRNAs (hsa_circ_0103546, 
hsa_circ_0101031, hsa_circ_0017728, hsa_circ_ 
0103948 and hsa_circ_0103942) were selected 
according to the fold change, and RT-qPCR assay 
was performed to verify the expression of 5 upreg-
ulated circRNAs in 55 pairs of tumor and non-can-
cerous tissues from GC patients. RT-qPCR and 
high-throughput sequencing independently came 
to the same conclusion of 5 upregulated circRNAs 
expression (Figure 1 B). In addition, we found that 
hsa_circ_0017728 expression showed the highest 
levels among 5 upregulated circRNAs and was se-
lected to focus on our further study (Figure 1 B).

Clinical significance of hsa_circ_0017728  
in GC patients

First, we revealed that hsa_circ_0017728 was 
up-regulated in 87.3% of GC patients (48/55) 
(Figure 2 A). In addition, high hsa_circ_0017728 
expression was closely associated with poorer 
pathological differentiation (Figure 2 B), higher 
TNM stage (Figure 2 C) and lymph node metasta-
sis (Figure 2 D) in GC patients. Kaplan-Meier analy-
sis also revealed a significant correlation between 
high hsa_circ_0017728 expression and poor over-
all survival/disease-free survival in GC patients 
(Figure 2 E). High hsa_circ_0017728 expression 
significantly positively correlated with TNM stage 
and lymph nodes metastasis, but had no signifi-
cant correlation with gender, age or tumor size  
(Table I). Furthermore, hsa_circ_0017728 was sig-
nificantly increased in five GC cell lines (AGS, BGC-
823, MKN-28, MGC-803 and SGC-7901) compared 
with normal human gastric epithelial cell line GES-1  
(Figure 2 F). 
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Figure 1. High-throughput sequencing was used to determine differentially expressed circRNAs in GC tissues and 
corresponding non-cancerous tissues. The cluster heatmap represented the 43 differentially expressed circRNAs in  
3 pairs of GC tumor and non-cancerous tissues, which were selected out according to the screening criteria p < 0.001, 
false discovery rate ≤ 0.001 and |Log2fold change| ≥ 1, and red color and green color indicated high and low expression 
level, respectively (A). The expression levels of the top 5 up-regulated circRNAs – hsa_circ_0103546, hsa_circ_0101031, 
hsa_circ_0017728, hsa_circ_0103948 and hsa_circ_0103942 – were selected according to the fold change, and RT-qP-
CR assay was performed to verify their expression in 55 pairs of tumor and non-cancerous tissues from GC patients (B)

*P < 0.05. 

Hsa_circ_0017728 knockdown suppressed 
proliferation and migration and induced 
apoptosis in GC cell lines

We transfected with specific siRNA targeted 
hsa_circ_0017728 into MKN-28 and MGC-803 
cells, and the results showed significant down-reg-
ulation of hsa_circ_0017728 in MKN-28 and MGC-
803 cells compared with the control group (Figure 
3 A). After transfection with si-0017728 into MKN-
28 and MGC-803 cells for 48 h and 72 h, CCK-8 
assay indicated a significant reduction of cell via-
bility (Figure 3 B). Scratch test showed that knock-

down of hsa_circ_0017728 led to the inhibition of 
migration in MKN-28 and MGC-803 cells (Figure 
3 C). Annexin V-FITC/PI double staining showed 
an increase of cell apoptosis rate in MKN-28 and 
MGC-803 cells with hsa_circ_0017728 knockdown 
(Figure 3 D).

Hsa_circ_0017728 acted as a miRNA 
sponge for miR-149 in GC cell lines

To investigate circRNA-miRNA interaction path-
ways, Circinteractome bioinformatics databases 
(https://circinteractome.nia.nih.gov/) were used 
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Figure 2. The clinical significance of hsa_circ_0017728 in GC patients. Hsa_circ_0017728 was up-regulated in 
87.3% of GC patients (A). High Hsa_circ_0017728 expression in GC patients was closely associated with poorer 
pathological differentiation (B), higher TNM stage (C) and lymph node metastasis (D). Kaplan-Meier analysis was 
performed to evaluate the correlation between hsa_circ_0017728 expression and overall survival/disease-free 
survival in GC patients (E). Hsa_circ_0017728 expression level was measured in five GC cell lines (AGS, BGC-823, 
MKN-28, MGC-803 and SGC-7901) and normal human gastric epithelial cell line GES-1 (F)

*P < 0.05, ***p < 0.001 compared with the normal control group. 
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to predict potential binding sites of miRNAs in 
hsa_circ_0017728. We found that miR-149 as 
a candidate miRNA might be a potential target of 
hsa_circ_0017728, and the putative binding sites 
of miR-149 on hsa_circ_0017728 was predicted by 
Circinteractome and highlighted as shown in Fig-
ure 4 A. To verify this assumption, luciferase ac-
tivity reporter assays were performed in MKN-28 
and MGC-803 cells after transfection with the WT 
or Mut sequence of hsa_circ_0017728, and then 
co-transfection with miR-149 mimics or inhibitors. 
First, the expression level of miR-149 was dramat-
ically increased or decreased in MKN-28 and MGC-
803 cells after transfection with miR-149 mimics or 
inhibitors, respectively, compared with that of the 
corresponding control group (Figure 4 B). The lucif-
erase activity was significantly reduced in MKN-28 

and MGC-803 cells after co-transfection with miR-
149 mimics and hsa_circ_0017728-WT, while the 
luciferase activity was markedly increased in MKN-
28 and MGC-803 cells after co-transfection with 
miR-149 inhibitors and hsa_circ_0017728-WT, 
compared with the control group (Figures 4 C, D). 
However, the luciferase activity had no significant 
change when the corresponding target sites were 
mutated in MKN-28 and MGC-803 cells (Figures 
4 C, D). In addition, we found that miR-149 was 
down-regulated in human GC tissues compared 
with that in the corresponding non-cancerous 
tissues (Figure 4 E). Spearman’s rank correlation 
analysis showed that the expression of miR-149 
was inversely correlated with hsa_circ_0017728 
(Spearman’s r = –0.479; p < 0.001; Figure 4 F) in 
55 human GC tissues. Kaplan-Meier analysis found 
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that GC patients with low miR-149 expression 
showed poorer survival (Figure 4 G). These findings 
suggested that miR-149 and hsa_circ_0017728 
might exert completely different effects in the 
progression of GC. In vitro experimental measure-
ments indicated that miR-149 loss of function 
enhanced proliferation of MKN-28 and MGC-803 
cells (Figure 5 A) and reversed si-0017728-induced 
growth inhibition and apoptosis in MKN-28 and 
MGC-803 cells (Figure 5 B).

MiR-149 exerted an anti-oncogenic effect 
in vitro by targeting IL-6/STAT3 signaling

miR-149 as an anti-oncomiR has been report-
ed during GC tumorigenesis [19]. Interestingly, IL-6 
is a  direct target involved in miR-149-associated 
oncotherapy [24, 29]. However, the roles of miR-
149/IL-6 signaling have not been completely elab-
orated in gastric carcinogenesis. Using the online 
bioinformatics algorithm TargetScan (http://www.
targetscan.org/), we found that the 3′-untranslat-
ed region (3′-UTR) of IL-6 contained one conserved 
binding site of miR-149, as shown in Figure 6 A. 
To confirm this finding, luciferase activity reporter 
assays were performed in MKN-28 and MGC-803 
cells after transfection with WT or Mut 3′-UTR of 
IL-6 combined with miR-149 mimics or inhibitors. 
The luciferase reporter assay revealed that the lu-
ciferase activity of IL-6-WT but not IL-6-MUT was 
significantly reduced in the miR-149 mimics group, 

compared with that of the control group. In con-
trast, the luciferase activity was elevated in the 
miR-149 inhibitor group with IL-6-WT but not IL-
6-MUT (Figures 6 B, C). Furthermore, IL-6 protein 
expression was significantly reduced in MKN-28 
and MGC-803 cells after transfection with miR-149 
mimics. In contrast, the opposite results were ob-
tained when cells were transfected with miR-149 
inhibitors (Figure 6 D). Functionally, miR-149 over-
expression dramatically inhibited cell growth (Fig-
ure 7 A) and induced cell apoptosis (Figures 7 B, C) 
in MKN-28 and MGC-803 cells, as well as reducing 
the protein levels of p-STAT3 (Figure 7 D). However, 
overexpression of IL-6 had a  tendency to reverse 
the antineoplastic activity of miR-149 in vitro. 

Discussion

In this study, up-regulation of hsa_circ_0017728 
and down-regulation of miR-149 were found to be 
negatively correlated in GC tissues. Knockdown of 
hsa_circ_0017728 had the ability to induce inhibi-
tion of cell proliferation and migration and elevate 
the cell apoptosis rate in MKN-28 and MGC-803 
cells. However, miR-149 loss of function was ob-
served to block the anti-proliferative and pro-apop-
totic activity of hsa_circ_0017728 knockdown  
in vitro. In addition, we found that IL-6 was a direct 
target of miR-149, and overexpression of miR-149 
induced cell growth inhibition and apoptosis in vi-
tro by repressing the IL-6/STAT3 signaling pathway. 

Table I. Correlation between clinicopathological factors and hsa_circ_0017728 expression levels in GC

Variable Number hsa_circ_0017728
low expression

(n = 20)

hsa_circ_0017728
high expression

(n = 35)

P-value

Gender: 0.143

Male 37 11 26

Female 18 9 9

Age [years]: 0.714

< 60 34 13 21

≥ 60 21 7 14

Tumor size [cm]: 0.185

< 5 35 15 20

≥ 5 20 5 15

TNM stages: 0.004

I–II 30 16 14

III–IV 25 4 21

Lymph nodes metastasis: 0.019

Negative 27 14 13

Positive 28 6 22
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Figure 4. Hsa_circ_0017728 acted as a  miRNA sponge for miR-149. The putative binding sites between hsa_
circ_0017728 and miR-149 were predicted by online software Circinteractome (A). After transfection with miR-
149 mimics and inhibitors into MKN-28 and MGC-803 cells, miR-149 expression level was measured by RT-qPCR 
(B); luciferase reporter assays was performed in MKN-28 (C) and MGC-803 (D) cells co-transfected with WT or 
Mut hsa_circ_0017728. The expression level of miR-149 was measured using RT-qPCR in 55 pairs of tumor and 
non-cancerous tissues from GC patients (E). Spearman’s rank correlation analysis showed that the expression of 
miR-149 was inversely correlated with hsa_circ_0017728 in the 55 human GC tissues (F). Kaplan-Meier analysis 
was performed to evaluate the correlation between miR-149 expression and overall survival in GC patients (G)

*P < 0.05, #p < 0.05 compared with corresponding control group.
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Figure 6. IL-6 was a direct target of miR-149. The putative binding sites between IL-6 and miR-149 were predicted 
by the bioinformatics algorithm TargetScan (A) and verified by luciferase reporter assays in MKN-28 and MGC-803 
cells (B, C). After transfection with miR-149 mimics or inhibitors into MKN-28 and MGC-803 cells, the protein ex-
pression of IL-6 was measured by western blotting (D)

*P < 0.05, #p < 0.05 compared with corresponding control group.
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These findings indicated that hsa_circ_0017728 
functioned as a sponge of miR-149 and indirectly 
regulated IL-6/STAT3 signaling participating in the 
carcinogenesis of GC. 

CircRNAs are widely and aberrantly expressed 
in tumor tissues and have been reported to reg-
ulate tumor invasion and metastasis in a variety 
of cancers, including oral cancer [10], hepatocellu-
lar carcinoma (HCC) [11], bladder cancer [30] and 
non-small cell lung cancer [31]. In GC, Chen et al. 
reported that circPVT1 is often upregulated in GC 
tissues and may promote cell proliferation by act-
ing as a sponge for members of the miR-125 fam-

ily [32]. Zhang et al. found that circLARP4 inhibits 
cell proliferation and invasion of gastric cancer by 
sponging miR-424-5p and regulating LATS1 ex-
pression [33]. Synthetic circRNA serves as a miR-
21 sponge to inhibit cell proliferation in GC [2]. In 
our study, hsa_circ_0017728 expression level was 
elevated in GC tissues and cell lines and closely 
related to poor overall survival. Experimental mea-
surements, including CCK8 assay, scratch test and 
Annexin V-FITC/PI double staining, revealed that 
hsa_circ_0017728 knockdown suppressed cell 
proliferation and migration and induced apoptosis 
in vitro, reflecting that hsa_circ_0017728 might 
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function as an oncogenic role in gastric carcino-
genesis and might be a potential therapeutic tar-
get for the treatment of GC. 

Interestingly, we found that hsa_circ_0017728 
served as a  miRNA sponge interacting with miR-
149 and regulated cell proliferation and apopto-
sis. Inhibition of miR-149 abolished the effect of 
hsa_circ_0017728 knockdown on anti-prolifera-
tion and pro-apoptosis in MKN-28 and MGC-803 
cells. We also found that the expression of miR-
149 was significantly and negatively correlated 
with hsa_circ_0017728 in GC tissues, suggesting 
that miR-149 exerted a  negative function with 
hsa_circ_0017728 in the progression of GC. Pre-
vious studies have reported the miR-149 primarily 
serves as an anti-tumor miRNA, and its expression 
levels are repressed in multiple types of cancers, 
including HCC [34], breast cancer [35] and GC [19]. 
Luo et al. showed that over-expression of miR-149 
suppresses HCC cell migration and invasion in vitro 
[34]. Luo et al. suggested that overexpression of 
miR-149 impairs the migration and invasion abili-
ty of HGC-27 and SGC-7901 cells [19]. Chan et al. 
stated that overexpression of miR-149 has no ef-
fect on cell proliferation in IV2 and Hs578T cells, 
but suppressed cell migration and invasion in vitro 
and metastasis in vivo [35]. In our study, we also 
found that miR-149 played an antineoplastic role 
in vitro by the inhibition of cell proliferation and 
the increase of the apoptosis rate in MKN-28 and 
MGC-803 cells. 

Previous studies have frequently reported that 
over-activation of STAT3, as a transcription factor 
involved in various biological processes [36], is 
associated with cell proliferation, migration, ad-
vanced TNM stage and poor prognosis in GC and 
may be a  novel therapeutic target for the treat-
ment of GC [37, 38]. IL-6/IL-6 receptor (IL6R) sig-
naling activates the phosphorylation of janus ki-
nase 2, and then enhances the phosphorylation of 
STAT3 (p-STAT3) [39]. Cancer-associated fibroblasts 
via the secretion of IL-6 promote epithelial-mesen-
chymal transition and metastasis of gastric cancer 
via over-activation of the STAT3 signaling pathway 
[40]. Moreover, the activation of IL-6/STAT3 signal-
ing is associated with chemotherapy resistance in 
GC cells [41]. Intriguingly, epigenetic silencing of 
miR-149 in cancer-associated fibroblasts increas-
es IL-6 secretion in the tumor microenvironment 
of GC, which results in the acceleration of GC cell 
proliferation, colony forming ability, migration and 
invasion [24]. Investigation into the molecular 
mechanisms of the antineoplastic activity of miR-
149 revealed that IL-6 was a direct target of miR-
149, and overexpression of miR-149 could inhibit 
the protein expression of IL-6 and p-STAT3 in MKN-
28 and MGC-803 cells. These findings suggested 
that GC cell proliferation and apoptosis might be 

affected by miR-149-mediated inhibition of the 
IL-6/STAT3 signaling pathway.

In conclusion, our results demonstrated that 
the hsa_circ_0017728 expression level was in-
creased in GC tissues and cell lines. We also found 
that hsa_circ_0017728 might serve as a  ceRNA 
to sponge miR-149 and indirectly regulate the 
IL-6/STAT3 signaling pathway in GC cell prolifer-
ation and apoptosis. The regulatory network of 
hsa_circ_0017728/miR-149/IL-6/STAT3 cascade 
signaling might provide a better understanding of 
gastric carcinogenesis and progression. 
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